Using Lasers to Save Lives

Using Lasers to Save Lives

Scenario: you’re driving to your new job at a university campus and using your Global Positioning System (GPS)-enabled smartphone to tell you—and your car—how to get there. Once you arrive, you begin using building signs to identify your structure of interest. You’ve parked, made it inside, and are greeted with a building map on a bulletin board that directs you to the particular office you’re looking for. Following the map’s diagram, you weave through unlabeled corridors, dark stairwells, and a windowless basement hallway to reach your final destination. It’s a good thing you arrived early since you got lost a couple of times between the building’s entrance and your new office. If only the GPS-enabled device you used to get around outside could tell you where to go (and where you are) inside.

The average person spends 87% of their time indoors1. This likely includes a combination of time inside a residence—such as a private home—or in a commercial or public building such as a business, school, museum, or shopping mall. Yet, the GPS technology we’ve come to depend on for reliable and accurate location and navigation outdoors is completely ineffective in such buildings due to obstructions from rooftops, walls, and windows. This issue, combined with the lack of widely-available indoor maps, has made indoor navigation capabilities a significant challenge. 

For firefighters, this challenge is especially critical; the lack of accurate indoor building maps means firefighters are much more likely to get lost and disoriented. In addition to trying to navigate an unknown building—just as the new hire was in our scenario above—firefighters are moving with limited visibility, wearing up to 50 lbs of gear, and breathing only a finite amount of oxygen. Seconds count. 

The ..

Support the originator by clicking the read the rest link below.