Transitioning to Quantum-Safe Encryption


With their vast increase in computing power, quantum computers promise to revolutionize many fields. Artificial intelligence, medicine and space exploration all benefit from this technological leap — but that power is also a double-edged sword. The risk is that threat actors could abuse quantum computers to break the key cryptographic algorithms we depend upon for the safety of our digital world.


This poses a threat to a wide range of critical areas. Fortunately, alternate cryptographic algorithms that are safe against quantum and classical computer attacks already exist.


The National Institute of Standards and Technology (NIST) recently announced such alternatives following the completion of the third round of the post-quantum cryptography (PQC) standardization process. In total, four PQC algorithms have been selected by NIST, one for key establishment (CRYSTALS-KYBER) and three for digital signature (CRYSTALS-Dilithium, FALCON and SPHINCS).


While this is encouraging, the major challenge ahead is transitioning today’s encryption implementations to quantum-safe encryption (QSE). This article describes how quantum computers impact encryption and outlines an approach for guiding organizations to transition to QSE.


Impact on Asymmetric Encryption


Encryption algorithms typically protect sensitive data in storage, transit or use. For instance, processes such as securing data communications, signing financial transactions in blockchain and signing software for secure distribution all use asymmetric encryption. It’s now becoming clear that asymmetric encryption algorithms based on factoring large integers (e.g., RSA) and those based on discrete logarithms (e.g., Diffie-Hellman) will need to be replaced by quantum-safe alternatives such as CRYSTALS-KYBER and CRYSTALS-Dilithium.


Effective security strength (shown in Table 1 below) suggests that the strength of RSA and elliptic-curve cryptography (ECC) is weaker or comparable to advanced encryp ..

Support the originator by clicking the read the rest link below.