Why Pulse Current Charging Lithium-Ion Batteries Extends Their Useful Lifespan

Why Pulse Current Charging Lithium-Ion Batteries Extends Their Useful Lifespan

For as much capacity lithium-ion batteries have, their useful lifespan is generally measured in the hundreds of cycles. This degradation is caused by the electrodes themselves degrading, including the graphite anode in certain battery configurations fracturing. For a few years it’s been known that pulsed current (PC) charging can prevent much of this damage compared to constant current (CC) charging. The mechanism behind this was the subject of a recent research article by [Jia Guo] and colleagues as published in Advanced Energy Materials.


Raman spectra of a) as-cycled and b) surface-removed graphite anodes aged under CC and Pulse-2000 charging. FE-SEM images of the cross-sections of graphite electrodes aged with CC (c,d) and Pulse-2000 (e,f) charging. d,f) are edge-magnified images of (c,e). g) shows the micrograph and O and C element mapping of the surface of CC-aged graphite electrode. TEM images of h) fresh, i) CC, and j) Pulse-2000 aged graphite anodes. (Credit: Jia Guo et al., 2024)

The authors examined the damage to the electrodes after multiple CC and PC cycles using Raman and X-ray absorption spectroscopy along with lifecycle measurements for CC and PC charging at 100 Hz (Pulse-100) and 2 kHz (Pulse-2000). Matching the results from the lifecycle measurements, the electrodes in the Pulse-2000 sample were in a much better state, indicating that the mechanical stress from pulse current charging is far less than that from constant current charging. A higher frequency with the PC shows increased improvements, though as noted by the authors, it’s not known yet at which frequencies diminishing returns will be observed.


The use of PC vs CC is not a new thing, with ..

Support the originator by clicking the read the rest link below.