What Laser Color Do You Like?

What Laser Color Do You Like?

Credit: NIST


Series of nanophotonic resonators, each slightly different in geometry, generates different colors of visible light from the same near-infrared pump laser.



Researchers at the National Institute of Standards and Technology (NIST) and the University of Maryland have developed a microchip technology that can convert invisible near-infrared laser light into any one of a panoply of visible laser colors, including red, orange, yellow and green. Their work provides a new approach to generating laser light on integrated microchips.


The technique has applications in precision timekeeping and quantum information science, which often rely on atomic or solid-state systems that must be driven with visible laser light at precisely specified wavelengths. The approach suggests that a wide range of such wavelengths can be accessed using a single, small-scale platform, instead of requiring bulky, tabletop lasers or a series of different semiconductor materials. Constructing such lasers on microchips also provides a low-cost way to integrate lasers with miniature optical circuits needed for optical clocks and quantum communication systems. 


The study, reported in the October 20 issue of Optica, contributes to NIST on a Chip, a program that miniaturizes NIST’s state-of-the-art measurement-science technology, enabling it to be distributed directly to users in industry, medicine, defense and academia.


Atomic systems that form the heart of the most precise and accurate experimental clocks and new tools for quantum information science typically rely on high-frequency visible (optical) laser light to operate, as opposed to the much lower frequency microwaves that are used to set official time worldwide.


Scientists are now developing atomic optical system technologies that are compact and operate at low power so th ..

Support the originator by clicking the read the rest link below.