This Week in Security: Broken Shims, LassPass, and Toothbrushes?

This Week in Security: Broken Shims, LassPass, and Toothbrushes?

Linux has a shim problem. Which naturally leads to a reasonable question: What’s a shim, and why do we need it? The answer: Making Linux work wit Secure Boot, and an unintended quirk of the GPLv3.


Secure Boot is the verification scheme in modern machines that guarantees that only a trusted OS can boot. When Secure Boot was first introduced, many Linux fans suggested it was little more than an attempt to keep Linux distros off of consumer’s machines. That fear seems to have been unwarranted, as Microsoft has dutifully kept the Linux Shim signed, so we can all run Linux distros on our Secure Boot machines.


So the shim. It’s essentially a first-stage bootloader, that can boot a signed GRUB2 or other target. You might ask, why can’t we just ask Microsoft to sign GRUB2 directly? And that’s where the GPLv3 comes in. That license has an “anti-tivoization” section, which specifies “Installation Information” as part of what must be provided as part of GPLv3 compliance. And Microsoft’s legal team understands that requirement to apply to even this signing process. And it would totally defeat the point of Secure Boot to release the keys, so no GPLv3 code gets signed. Instead, we get the shim.


Now that we understand the shim, let’s cover how it’s broken. The most serious vulnerability is a buffer overflow in the HTTP file transfer code. The buffer is allocated based on the size in the HTTP header, but a malicious ..

Support the originator by clicking the read the rest link below.