Solar Flares and Radio Communications — How Precarious are Our Electronics?

Solar Flares and Radio Communications — How Precarious are Our Electronics?

On November 8th, 2020 the Sun exploded. Well, that’s a bit dramatic (it explodes a lot) — but a particularly large sunspot named AR2781 produced a C5-class solar flare which is a medium-sized explosion even for the Sun. Flares range from A, B, C, M, and X with a zero to nine scale in each category (or even higher for giant X flares). So a C5 is just about dead center of the scale. You might not have noticed, but if you lived in Australia or around the Indian Ocean and you were using radio frequencies below 10 MHz, you would have noticed since the flare caused a 20-minute-long radio blackout at those frequencies.


According to NOAA’s Space Weather Prediction Center, the sunspot has the energy to produce M-class flares which are an order of magnitude more powerful. NOAA also has a scale for radio disruptions ranging from R1 (an M1 flare) to R5 (an X20 flare). The sunspot in question is facing Earth for the moment, so any new flares will cause more problems. That led us to ask ourselves: What if there were a major radio disruption?

This happens more often than you might think. In October, AR2775 set off two C flares and while plasma from the flare didn’t hit Earth, UV radiation caused a brief radio outage over South America. The X-ray and UV radiation travel at the same speed as light, so by the time we see a flare, it is too late to do anything about it, even if we could.


The effects ..

Support the originator by clicking the read the rest link below.