NIST Researchers Develop Miniature Lens for Trapping Atoms

NIST Researchers Develop Miniature Lens for Trapping Atoms

Atoms are notoriously difficult to control. They zigzag like fireflies, tunnel out of the strongest containers and jitter even at temperatures near absolute zero.


Nonetheless, scientists need to trap and manipulate single atoms in order for quantum devices, such as atomic clocks or quantum computers, to operate properly. If individual atoms can be corralled and controlled in large arrays, they can serve as quantum bits, or qubits — tiny discrete units of information whose state or orientation may eventually be used to carry out calculations at speeds far greater than the fastest supercomputer.


Researchers at the National Institute of Standards and Technology (NIST), together with collaborators from JILA — a joint institute of the University of Colorado and NIST in Boulder — have for the first time demonstrated that they can trap single atoms using a novel miniaturized version of “optical tweezers” — a system that grabs atoms using a laser beam as chopsticks.


Graphical illustration of light focusing using a planar glass surface studded with millions of nanopillars (referred to as a metalens) forming an optical tweezer. (A) Device cross section depicts plane waves of light that come to a focus through secondary wavelets generated by nanopillars of varying size. (B) The same metalens is used to trap and image single rubidium atoms.


Credit: Sean Kelley/NIST


Ordinarily, optical tweezers, which garnered the 2018 Nobel Prize in Physics, feature bulky centimeter-size lenses or microscope objectives outside the vacuum holding individual atoms. NIST and JILA have previously used the technique with great success to create an atomic clock.


In the new design, instead of typical ..

Support the originator by clicking the read the rest link below.