A Billion Tiny Pendulums Could Detect the Universe’s Missing Mass

A Billion Tiny Pendulums Could Detect the Universe’s Missing Mass

Credit: NIST


Visible matter makes up only a tiny amount of the composition of the universe. Dark energy, a mysterious entity that is accelerating the expansion of the universe, dominates, followed by dark matter, invisible material that exerts a gravitational tug.



Researchers at the National Institute of Standards and Technology (NIST) and their colleagues have proposed a novel method for finding dark matter, the cosmos’s mystery material that has eluded detection for decades. Dark matter makes up about 27% of the universe; ordinary matter, such as the stuff that builds stars and planets, accounts for just 5% of the cosmos. (A mysterious entity called dark energy, accounts for the other 68%.)


According to cosmologists, all the visible material in the universe is merely floating in a vast sea of dark matter — particles that are invisible but nonetheless have mass and exert a gravitational force. Dark matter’s gravity would provide the missing glue that keeps galaxies from falling apart and account for how matter clumped together to form the universe’s rich galactic tapestry. 


The proposed experiment, in which a billion millimeter-sized pendulums would act as dark matter sensors, would be the first to hunt for dark matter solely through its gravitational interaction with visible matter. The experiment would be one of the few to search for dark matter particles with a mass as great as that of a grain of salt, a scale rarely explored and never studied by sensors capable of recording tiny gravitational forces.

Dark matter, the hidden stuff of our universe, is notoriously difficult to detect. In search of direct evidence, NIST researchers have proposed using a 3D array of pendulums as force detectors, which could detect the gravitational influence of passing dark matter particles. When a dark matter pa ..

Support the originator by clicking the read the rest link below.